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Abstract

Objectives: To replicate Stone et al’s (2022) finding that the distribution of response in clinical antidepressant trials is trimodal with 
large, medium-effect, and small subgroups.

Methods: To apply finite mixture modeling to pre-post Hamilton Depression Rating Scale (HDRS) differences (n = 2184) of STAR*D 
study’s level 1, a single-arm, open-label study. For a successful replication, the best fitting model had to be trimodal, with comparable com-

ponents as in Stone et al. Secondary/sensitivity analyses repeated the analysis for different baseline levels of depression severity, imputed 
values, and patient-reported depression symptoms.

Results: The best fitting models were either bimodal or trimodal but the trimodal solution did not meet criteria for replication. The 
bimodal model had 1 component with HDRS mean change of M = − 13.0, SD = 6.7 and included 65.3% of patients, and another compo-

nent with M = − 1.8, SD = 5.1, 34.7%, respectively. For the trimodal model, the component with the largest change (M = − 14.3, 
SD = 6.4) applied to 52% of patients, which differed substantially from the large effect component in Stone et al (M = − 18.8, 
SD = 5.1), which applied to 7.2%. Secondary/sensitivity analyses arrived at similar conclusions, and for patient-reported depression symp-

toms the best fitting models were unimodal or bimodal.

Conclusion: This analysis failed to identify the trimodal distribution of response reported in Stone et al. In addition to being difficult to 
operationalize for regulatory purposes, results from mixture modeling are not sufficiently reliable to replace the more robust approach of 
comparing mean differences in depression rating scale scores between treatment arms. © 2025 The Author(s). Published by Elsevier Inc. 
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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What is new?

Key findings

• We could not replicate the trimodal response distri-

bution found in industry trials.

What this adds to what is known?

• Heterogeneity of treatment response can make the 
average effect unreliable.

• The trimodal response distribution indicates this 
heterogeneity.

• Modeled response distributions do not seem to be 
robust and may be prone to biases.

What is the implication and what should change 
now?

• It is premature to dismiss the average response 
when evaluating antidepressants.

1. Introduction

The efficacy of antidepressant drugs is usually judged 
based on statistical significance and the size of the average 
drug-placebo difference in depression symptom scale 
scores. Although the average drug-placebo difference is 
statistically significant, the magnitude is small — about 2 
points on the Hamilton Depression Rating Scale (HDRS) 
[1] which is below nearly all established thresholds of clin-

ically meaningful effects [2,3].

However, efficacy judged by the average drug-placebo 
difference may be misleading if there is heterogeneity of 
treatment effects. In 1 study, outcome distributions which 
were nonnormal and differed between drug-arms and 
placebo-arms were statistically decomposed into two 
groups referred to as ‘‘nonbenefiters’’ and ‘‘benefiters’’ 
and more patients in the drug-arm than in the placebo-

arm were categorized as ‘‘benefiters’’ [4]. In a much larger 
recent analysis of individual patient data, the distributions 
of pre-post changes of depression symptom scores were de-

composed into a mixture of different normal subdistribu-

tions (modes, components) [1]. It was reported that a 
trimodal distribution best fit the data overall, which was in-

terpreted to correspond to different subgroups of re-

sponders. The three subdistributions corresponded with 
different levels of improvement, respectively denoted as 
‘‘large’’ (with a mean change of M = 16.00 points, stan-

dard deviation SD = 4.22), ‘‘nonspecific’’ (M = 8.94, 
SD = 6.96) and ‘‘minimal’’ (M = 1.68, SD = 2.99) 
response subgroups (Fig S1). 25% of antidepressant-

treated patients were estimated to belong to the

subdistribution of ‘‘large’’ response, compared to 10% of 
those taking placebo. Stone et al concluded that the small 
average drug-placebo differences are ‘‘best understood as 
affecting a minority of patients as either an increase in 
the likelihood of a Large response or a decrease in the like-

lihood of a Minimal response’’ (p. 5). While the term 
‘‘response’’ is technically appropriate and commonly used, 
it is problematic as this may suggest that causal processes 
related to the treatment itself are involved in producing 
the subdistributions. However, besides the effect of treat-

ment, several other mechanisms are involved in response, 
such as regression to the mean, natural course or methodo-

logical biases. Unfortunately, the findings have been inter-

preted as showing that there are specific subgroups of 
participants with distinct ‘‘responses’’, which is misleading 
since the subdistributions overlap and do not correspond to 
groups of participants (see examples in the Appendix). In 
addition, it remains unknown if the trimodal distribution 
is a robust finding. If such a similar distribution can be 
found in an open-label, nonindustry study, then this would 
be compatible with the assumption of a subgroup of pa-

tients with a large effect with whatever cause (actual drug 
effects, natural course, biases, both). If no trimodal distribu-

tion is found, especially if there is no subdistribution of a 
‘‘large effect’’ then this raises questions about the external 
validity and interpretation of Stone et al’s findings. There-

fore, we wanted to explore whether Stone et al’s finding of 
a trimodal distribution could be replicated by applying 
finite mixture modeling to the STAR*D study, a large sin-

gle arm, open-label, nonindustry antidepressant trial.

2. Methods

We conducted a secondary analysis of the STAR*D 
study (level 1). The analysis plan was registered on 2022-

11-03 on the Open Science Framework (https://osf.io/ 
rmdu9/) with the protocol uploaded prior to analysis. We 
used STROBE (strengthening the reporting of observational 
studies in epidemiology) [5] as a reporting guideline.

2.1. Data

STAR*D is a large publicly funded study [6]. Enrolled 
patients were 18—75 years of age, seeking care at 18 pri-

mary and 23 psychiatric care clinics. Clinical research co-

ordinators screened 4790 patients for major depressive 
disorder and administered the HDRS, on which 4041 pa-

tients scored ≥14, met the other inclusion criteria, and 
enrolled into the study. In level 1 of the study, all partici-

pants were treated open-label with citalopram for up to 
14 weeks. HDRS-scores at the end of level 1 were obtained 
by independent, telephone-based interviewers. The Quick 
Inventory of Depression Symptomatology (QIDS-SR) 
self-report rating scale was regularly provided on site. In 
our main analysis, we selected the 3110 patients who
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scored ≥14 on the baseline HDRS because such cutoffs are 
common in clinical trials, too. In secondary analyses, we 
included patients independent of their baseline severity. 
We used a version of the STAR*D data as accessed through 
the National Institute of Mental Health Data Archive 
(collection ID #2148) in November 2019 by E.P.

2.2. Analysis

2.2.1. Primary analysis

The primary analysis aimed to replicate the trimodal dis-

tribution of pre-post HDRS differences. We used a finite 
mixture modeling approach where nonnormal distributions 
are decomposed into a set of different normal distributions, 
similar to Stone et al [1]. We considered the replication suc-

cessful if four prespecified criteria were met: a) the best 
fitting finite mixture model had three components (is trimo-

dal), b) the order of the size of the components is compara-

ble with Stone et al’s findings among antidepressant treated 
patients (ie, the number of ‘‘large’’ responders is smaller 
than the number of ‘‘nonspecific’’ responders, and the num-

ber of ‘‘nonspecific’’ and ‘‘minimal’’ responders differ 
minimally), c) the proportions of patients in each of the 
three components are comparable to those found in Stone 
et al., and d) the mean improvement in the ‘‘large’’ 
responder group is comparable to that found in Stone et al. 

In their publication, Stone et al used a finite mixture 
model with the data from the drug and placebo groups 
where means and standard deviations for the drug and pla-

cebo groups had to be identical (Fig S1). Because there was 
no placebo group in the STAR*D trial, we based the com-

parison on the results provided by Stone for antidepressant-

treated patients for a modeling approach where means and 
standard deviations could vary for the drug and the placebo 
groups (Fig S1).

We compared the proportions of patients in each of the 
components found between our study and Stone et al’s us-

ing χ 2 -tests, based on the 2 x 2 table (study: Stone vs 
STAR*D, category: large response vs combined unspe-

cific/minimal) and calculated effect sizes. The findings 
were considered comparable if the upper-bound of the con-

fidence interval of the effect size did not overlap with Co-

hen’s d = 0.3. Similarly, the pre-post differences within the 
large component were considered comparable if the upper-

bound of the effect size did not exceed 0.3.

2.2.2. Secondary analysis

We ran subgroup analyses with all patients independent 
of their baseline-severity which were categorized into base-

line severity HDRS ≤18, 18 ! HDRS ≤22, and HDRS 
O22. We also visually compared the distributions of the 
pre-and post- HDRS scores to those found in Stone et al.

2.2.3. Sensitivity analyses

We ran two sensitivity analyses to see if the findings 
were sensitive to handling of missing data and choice of

the outcome. First, we repeated the main analysis with 
imputed values for missing HDRS exit scores. Second, 
we repeated the main analysis with the patient self-report 
QIDS-SR as the outcome measure. See changes to the pro-

tocol for details below (2.4).

2.3. Statistical analysis

We used R (version 4.3.0) [7] for all analyses and the 
‘‘mixR’’ package [8] to apply finite mixture modeling. 
We evaluated model fit using the Bayesian Information Cri-

terion (BIC) and Akaike’s Information Criterion (AIC). Ef-

fect sizes were calculated using the ‘‘esc’’ package. 
Imputation was done using the ‘‘areg’’-function of the 
‘‘Hmisc’’ package [9]. Data were first accessed/analyzed 
between December 2022 and June 2024 (including a break 
due to lacking resources). Data were curated/provided by T. 
K. and C.X., and data analysis was performed by M.P. 
Changes to the protocol are detailed below (2.4). The R-

code is available via the Open Science Framework 
(https://osf.io/rmdu9/).

2.4. Changes to the initial protocol

For the primary analysis, we had originally planned 
to use the last observation carried forward (LOCF) 
approach to impute missing values for patients with 
missing exit HDRS scores. During data analysis, we 
realized that there were no intermediate assessments of 
the HDRS and an LOCF approach would lead to an 
excess of pre- to post-differences of zero, thus obfus-

cating the finite mixture modeling approach. Therefore, 
for the primary analysis, we analyzed only those with 
available exit HDRS scores.

For the secondary analysis, we planned to impute 
missing exit HDRS values with multiple imputation using 
variables with less than 90% missing, but without 
providing further details. We decided (May 2024) to use 
multiple imputation where, for each imputed sample, ‘‘a 
flexible additive model is fitted on a sample with replace-

ment from the original data and this model is used to pre-

dict all of the original missing and nonmissing values for 
the target variable’’ [9]. We generated 30 imputed sam-

ples, following the recommendation of Harrell (2015) 
[10]. For imputation we used the baseline demographic 
and clinical variables (Table 1) and the last available 
QIDS-SR values because these correlated highly with 
the HDRS (r = 0.81).

In the protocol we did not prespecify how to calcu-

late Cohen’s d for the χ2-tests. Because of the theoret-

ical priority to compare the components with the largest 
pre-post change in HDRS values, we decided (March 
2024) to base it on the 2 × 2 table Study (Stone vs 
STAR*D) × category (large response vs combined un-

specific/minimal).
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Table 1. Sociodemographic and clinical characteristics (primary analysis, N = 3110)

M or N SD or % % Missing

Demographic features

Age 41.00 13.03 0

Female 1996 64 0

Race

Black 327 11 0

Hispanic/Latino 402 13 0

White 1977 64 0

Other 404 13 0

Education (y) 13.60 3.23 47

Monthly household income 2321.86 2978.19 7

Employment

Employed 1711 55 0

Unemployed 1205 39 0

Retired 170 5 0

Insurance

Private 1517 4917 0

Public 580 19 0

None 1047 34 0

Marital status

Single 905 29 0

Married/cohabiting 1287 41 0

Separated/divorced 823 26 0

Widowed 92 3 0

Clinical features

First episode age !18 1200 39 1

Recurrent depression 1940 67 7

Family history of depression 1694 55 2

Age at first episode 25.14 14.29 2

Illness duration (y) 16.11 13.47 1

Number of episodes 5.56 9.32 15

Duration current episode (mo) 24.88 52.02 1

Duration current episode ≥2y 787 26 1

QoL questionnaire 39.07 14.26 12

SF-12, mental health 25.58 8.06 12

SF-12 physical health 48.61 12.13 12

Work and social adjustment scale 24.98 8.67 12

HDRS-17 21.87 5.21 0

IDS-C30 39.07 9.64 2

QIDS-IVR 16.88 3.31 3

Cumulative illness rating scale 

Categories endorsed 2.49 1.55 0

Total score 4.74 3.88 0

Severity score 1.83 0.81 10

Psychiatric diagnosis screening 

Agoraphobia 559 18 1

Alcohol abuse/dependency 371 12 1

Bulimia 607 20 1

Drug abuse/dependency 234 8 1

Generalized anxiety disorder 736 24 1

Hypochondriasis 336 11 1

(Continued )
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3. Results

3.1. Study populations

A flow chart of the patient selection process is provided 
in Figure 1. Baseline characteristics of patients are pro-

vided in Table 1.

3.2. Primary analysis

In the primary analysis using only complete cases, the best 
fitting models were bimodal according to the BIC and trimo-

dal according to the AIC (Fig 2). However, the trimodal solu-

tion did not meet the other three predefined criteria for 
replication. First, we found a larger proportion of patients in 
the large response component than the nonspecific response 
component (52.0% vs 3.2%), whereas Stone et al found the 
opposite result (7.2% vs 41.8%). Second, the proportions in 
the three components were different in our study compared 
to those in Stone et al’s. In our study, the proportion in the 
large response vs all other components was 52% vs 48%,

compared to 7.2% vs 92.8% in Stone et al., resulting in a large 
difference, χ 2 (df = 1) = 5052.5, P ! .01, d = − 1.45 (95% 
CI − 1.40 to − 1.50). The proportions in the nonspecific and 
minimal component were about equal in Stone et al but 
differed substantially in our study, χ 2 (df = 1) = 609.7, 
P ! .01, d = 1.34 (95% CI − 1.21 to − 1.48). Third, the 
pre-post improvement in the large-response component was

− 14.3 (95% CI − 13.93 to − 14.67) in our study and − 18.8 
(95% CI − 18.63 to − 18.97) in Stone et al., d = − 0.83 
(95% CI − 0.76 to − 0.90). The large response component 
in our study was more similar to the nonspecific component 
in Stone et al (M = − 14.3 vs M = − 14.8).

3.3. Secondary analysis

3.3.1. Results by baseline severity

For the subgroup of patients with a baseline severity 
HDRS score ≤18, the best fitting model had two and three 
components according to the BIC and AIC, respectively 
(Fig S2). However, the components in the trimodal solution

Table 1. Continued

M or N SD or % % Missing

OCD 723 23 1

Panic disorder 422 14 1

PTSD 387 13 1

Social anxiety disorder 963 31 1

Somatoform disorder 284 9 1

Number of axis I comorbid psychiatric

disorders

0.35 0.79 1

IDS-C30, inventory of depressive symptomatology; OCD, obsessive compulsive disorder; PTSD, posttraumatic stress disorder; SF-12, short-

form-12 health-survey; QIDS-IVR, interactive voice response; QoL, quality of life.

Variables with less than 10% missing data were used for imputing the missing HDRS exit scores.

Figure 1. Patient flowchart.
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differed from those in Stone et al because the proportions in 
the small and nonspecific response components differed 
substantially: 27.3% vs 53.1% in the STAR*D study 
compared with 51.0% vs 41.8% in Stone et al.

For the subgroup of patients with a baseline severity 
18 ! HDRS ≤22, the best fitting model had two compo-

nents (Fig S3).

For the subgroup of patients with a baseline severity 
HDRS score O23, the best fitting models had two and 1 
component(s) according to the BIC and AIC, respectively 
(Fig S4). No trimodal solution could be found because 
the model did not converge.

3.3.2. Visual comparison of distributions of pre- and 
post-HDRS scores

The baseline HDRS scores of the dataset in Stone et al 
(their eFigure 2) seemed to be nonnormally distributed with 
a tighter distribution centered at an HDRS score of 23. In

contrast, the baseline HDRS scores in the STAR*D study 
seemed to be more normally distributed (Fig S8). We could 
not compare the posttreatment HDRS scores in the sample 
as a whole since this information was not available in 
Stone et al.

3.4. Sensitivity analyses

In the sensitivity analyses where missing exit HDRS 
scores were imputed, the models converged in 28 of the 
30 samples. The best fitting models according to the BIC 
were unimodal in 3 of the 28 imputed samples, bimodal 
in 24 samples, and trimodal in 1 sample (Fig S5). Accord-

ing to the AIC, the best fitting model was bimodal in 9 of 
the 28 imputed samples and trimodal 19 times. The trimo-

dal solutions varied substantially in their nature, meaning 
that very different solutions fitted the data equally well (on-

line supplement).

Figure 2. Results of Finite Mixture Modeling with 1 to 3 components (panels A—C) and, for comparison, the results from the drug-arm in Stone et al 

(2022) for a model where the means and standard deviation could vary for both arms (panel D). The components are plotted in different colors. The 

distribution of the original values is plotted as a histogram in the background of panel A. The densities of the mixture models are plotted as thick 

black lines (‘‘overall’’). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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For the QIDS-SR as outcome, the best fitting model had

1 and 2 components according to the BIC and AIC, respec-

tively (Fig S7).

4. Discussion

This study analyzed the HDRS pre-post differences in 
level 1 of the STAR*D study, where all patients were 
treated with citalopram, to see if the distribution is nonnor-

mal and better explained by subdistributions similar to 
those in industry-sponsored clinical trials [1]. Using finite 
mixture modeling, Stone et al [1] found that the nonnormal 
distribution in their dataset was better explained by a trimo-

dal distribution than a unimodal 1, including a small 
component with a large mean change from baseline. In 
contrast, the best fitting model in the STAR*D data was 
either bimodal or trimodal, but the trimodal model differed 
substantially from Stone et al’s so that none of the prespe-

cified criteria for replication was met. In particular, we did 
not identify a response component which was comparable 
with the large response component in Stone et al. We 
observed similar discrepant findings in secondary analyses 
for different baseline-levels of depression or for imputed 
values for the HDRS. In the sensitivity analysis with the 
self-report QIDS-SR measure, the best fitting model had 
only one or two components. Thus, none of the results from 
our analysis of the STAR*D data were in line with the find-

ings by Stone et al.

Our results are relevant for the interpretation of findings 
from clinical trials, where the average efficacy of antide-

pressants is small and likely not clinically significant 
[2,3]. However, the average drug-placebo difference might 
be misleading if there is heterogeneity in treatment effects. 
This was suggested by the results of Stone et al’s modeling 
analysis that the outcome distribution is nonnormal and bet-

ter explained by three response components. Patients clas-

sified into the ‘‘large’’ response component were suggested 
to be ‘‘(endo)phenotypes that are specifically responsive to 
antidepressant drugs (p. 5)’’. In our study, we could not 
replicate these findings, that is, finite mixture modeling re-

sults did not show that the trimodal model was consistently 
the best fitting model and there was no comparable distribu-

tion of ‘‘large’’ response.

If some patients respond especially well, as suggested by 
the trimodal distribution in Stone et al., then comparable 
distributions should also be seen in real-world trials such 
as STAR*D and not only in clinician rating scales but also 
in self-report scales. The failure to replicate the trimodal 
distribution in the STAR*D study and the different findings 
for clinician vs self-reports raises doubts about the general-

izability of the trimodal findings in randomized controlled 
trials and the finding that there is a subgroup of patients 
who respond especially well.

How could the discrepant findings be explained? For 
example, unblinding is present in most trials in which

blinding is tested and this was associated with increased ef-

ficacy in some studies [11,12] but not in others [13]. Un-

blinding may lead to biased symptom ratings where 
improvement in the drug-arm is overestimated and 
improvement in the placebo arm is underestimated, leading 
to a shift of distributions. A tendency of clinicians to 
harmonize symptom ratings may explain bimodal response 
distributions, leading to overall scores clustering at either 
end of the distribution. A trimodal distribution could be ex-

plained if the rating bias interacts with degree of symptom-

reduction, that is, if overestimation of improvement might 
be stronger for larger symptom-reductions, and underesti-

mation of improvement might be stronger for smaller 
symptom-reductions. There is some evidence that improve-

ment of symptoms on the HDRS toward symptom remis-

sion (eg, from 1 to 0 on an HDRS item) is judged as 
being more important than other changes (eg, from 3 to 
2) [14,15]. If there are several HDRS items rated as zero, 
then this may bias ratings of other items more strongly to-

ward improvement, compared to scenarios with no or few 
zero HDRS-item ratings. The effect of these putative biases 
on outcome distributions could be tested with simulations.

Rating biases may be less pronounced in nonindustry tri-
als such as the STAR*D trial, perhaps explaining why we 
could not replicate the trimodal distribution in Stone 
et al. Another finding raising doubt on the robustness of 
the trimodal solution is that it could not be found for 
self-report symptom ratings. Here, finite mixture models 
supported unimodal or bimodal response distributions. It 
would be interesting to repeat the analysis using self-

report outcomes in industry trials. Furthermore, the distri-

butions of drug and placebo arms should be more similar 
with more successful blinding. Other explanations for the 
differences between our results and those by Stone et al 
are different recruitment and inclusion/exclusion criteria 
in industry trials and the STAR*D study, the variety of 
different antidepressants in Stone et al’s study, or the use 
of different strategies to handle missing data. Comparison 
is also limited because there was no placebo control group 
in the STAR*D study.

Our results suggest that further research is needed on 
the distributions of symptom measures in antidepressants 
trials and consideration of its implications. What consti-

tutes a major deviation from the normal distribution and 
their difference between drug and placebo has not been 
discussed adequately yet, to our knowledge. The finite 
mixture modeling approach may deflect from the small 
average drug-placebo difference in antidepressant trials. 
If taken to its logical conclusion then even treatments 
with zero (or even negative) mean drug-placebo differ-

ences cannot be dismissed until subgroups with large im-

provements can be ruled out, invalidating well-

established testing paradigms for treatments. Further-

more, there is good reason to remain skeptical about 
the outlook to identify patients who benefit especially 
well from treatment [16] and until subgroups of patients

7C. Xu et al. / Journal of Clinical Epidemiology 187 (2025) 111943 



who respond more or less to treatment cannot be pre-

dicted, results from statistical models to decompose the 
outcome are just descriptions of data. Unfortunately, 
the subgroups identified via finite mixture models are 
easily misinterpreted in at least two ways (examples in 
the Appendix). First, in the interpretation of Stone 
et al’s study, the overlap between the subdistribution 
has been ignored and thus the drug-placebo differences 
in ‘‘response’’ have been overestimated. Second, the sub-

groups have been interpreted as distinct groups of pa-

tients caused by different effects of the treatment but 
this cannot be inferred from results of statistical models. 
Finally, reliably identifying subgroups of responders via 
finite mixture modeling requires large samples and 
should be seen in patient-reported outcomes, too. For 
smaller samples, qualitatively different solutions may 
have comparable fit and the results may be susceptible 
to imputation methods.

5. Conclusion

In conclusion, the trimodal antidepressant response distri-

bution as reported in Stone et al could not be replicated using 
data from the STAR*D trial, an open-label, nonindustry 
sponsored real-world antidepressant study. Therefore, our re-

sults do not support the notion that a subgroup of patients 
with a large response exists. Instead, these findings support 
the assumption that the putative subgroups from industry 
randomized controlled trials may be artifacts caused by 
methodological biases.
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